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Abstract

We present spectral element (SE) and discontinuous Galerkin (DG) solutions of the Euler and compressible Navier—
Stokes (NS) equations for stratified fluid flow which are of importance in nonhydrostatic mesoscale atmospheric modeling.
We study three different forms of the governing equations using seven test cases. Three test cases involve flow over moun-
tains which require the implementation of non-reflecting boundary conditions, while one test requires viscous terms (den-
sity current). Including viscous stresses into finite difference, finite element, or spectral element models poses no additional
challenges; however, including these terms to either finite volume or discontinuous Galerkin models requires the introduc-
tion of additional machinery because these methods were originally designed for first-order operators. We use the local
discontinuous Galerkin method to overcome this obstacle. The seven test cases show that all of our models yield good
results. The main conclusion is that equation set 1 (non-conservation form) does not perform as well as sets 2 and 3 (con-
servation forms). For the density current (viscous), the SE and DG models using set 3 (mass and total energy) give less
dissipative results than the other equation sets; based on these results we recommend set 3 for the development of future
multiscale research codes. In addition, the fact that set 3 conserves both mass and energy up to machine precision motives
us to pursue this equation set for the development of future mesoscale models. For the bubble and mountain tests, the DG
models performed better. Based on these results and due to its conservation properties we recommend the DG method. In
the worst case scenario, the DG models are 50% slower than the non-conservative SE models. In the best case scenario, the
DG models are just as efficient as the conservative SE models.
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1. Introduction

The recent paradigm shift in high-performance computing (HPC) is forcing many numerical weather pre-
diction (NWP) operational centers to rethink the numerical methods that their models are based on. For
example, the current trend in distributed-memory computing has moved toward clusters based on hundreds
of thousands of cheap, commodity-based processors; the top three fastest computers in the world in 2007 have
212,000 (Lawrence Livermore National Laboratory, USA), 65,000 (Forschungszentrum Juelich, Germany),
and 14,000 (New Mexico Computing Applications Center, USA). It is expected that clusters comprised of mil-
lions of processors will appear very soon. In order to take full advantage of computers with such high proces-
sor counts requires exploring numerical methods that are local in nature, have a large on-processor operation
count, and a small communication footprint. Local high-order methods like the spectral element and discon-
tinuous Galerkin methods have all of these properties and for this reason they have been successfully applied
to a variety of problems.

Spectral element (SE) methods combine the local domain decomposition property of finite element (FE)
methods with the high-order accuracy and weak numerical dispersion of spectral methods. SE methods have
shown promise in many areas of the geosciences including: seismic wave propagation [33], deep Earth flows
[13], climate [53,14], ocean [28,38], and numerical weather prediction [21,22]. These methods are high-order
FE methods where the interpolation and integration points are chosen to be the Legendre—Gauss—Lobatto
points.

In contrast, discontinuous Galerkin (DG) methods combine the local domain decomposition property of
FE methods, the high-order accuracy and weak numerical dispersion of spectral methods, and the conserva-
tion properties of finite volume (FV) methods; in essence, DG methods are the high-order generalization of
FV methods. There are two distinct types of DG methods: nodal (see [20,23]) and modal (see [12,59]), but
in the current study we only consider the nodal approach introduced in [20] which uses the same machinery
developed for SE methods such as quadrilateral grids, tensor product basis functions, and Legendre-Gauss—
Lobatto grid points. It has been only very recent (since 2000) that the DG method first appeared in geophys-
ical fluid dynamics (GFD) applications. However, implementations of the DG method in GFD have remained
primarily restricted to shallow water flow (see [44,35,2,20,10,12,37,40,34,23,24]). To date, there has been no
published work on either SE or DG methods for nonhydrostatic mesoscale atmospheric applications.

However, doing something for the first time is not a sufficient reason for developing a new model — the new
model must have attractive properties not offered by existing models. The high-order accuracy, geometric flex-
ibility to use any grid, and the scalability of SE and DG methods on large processor count computers are suf-
ficient reasons for exploring this new class of models.

Almost all nonhydrostatic mesoscale models currently in existence are based on the finite difference (FD)
method; examples include the following list of models: [4,5,11,17,25,26,29-32,39,42,43,46,48,57,58], and [60].
Included in this list are models such as ARPS (University of Oklahoma), COAMPS (US Navy), LM (German
Weather Service), MC2 (Environment Canada), MM5 (Penn State/NCAR), NMM (National Center for
Environmental Prediction), and WRF (NCAR). The only models in the literature not based on the FD
method are the FV models found in [7] and [1], and the SE and DG models presented in our paper. One
of the biggest advantages that SE and DG methods have over the FD method is that no terrain following
coordinates of the type presented in [16] need to be included in the governing equations. Of course, the orog-
raphy has to be accounted for in some manner but element-based Galerkin (EBG) methods, such as FE, SE,
FV, and DG, incorporate the orography via the definition of the grid. EBG methods do not require either
orthogonal grids or grids with specific directions (such as the I and J indices in FD models); EBG models
are inherently unstructured and, while requiring additional data structures for bookkeeping, completely liber-
ate the method from the grid. This freedom from the grid has major repercussions in the implementation of
these methods on distributed-memory computers in that no halo is required which translates into truly local
algorithms that require very little communication across processors; instead, the communication stencil con-
sists of the perimeter values of each processor (see [21]). The advantage that SE and DG methods have over
the FD and FV methods is that high-order solutions (greater than fourth order) can be constructed quite nat-
urally within the framework — such high-order properties are desirable because they reduce the dispersion
errors associated with the discrete spatial operators [19]. In fact, the SE and DG formulations proposed in
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this paper allow for arbitrarily high-order spatial operators to be constructed by an input parameter; all the
results presented in Section 6 use either 8th or 10th order polynomials per element.

It should be mentioned that there are other numerical methods in the literature that have much to offer
nonhydrostatic mesoscale atmospheric modeling. Most notably are the weighted essentially non-oscillatory
(WENO) [15,27,45], spectral finite volume (SFV) [56], and spectral difference (SD) [36] methods. These meth-
ods possess many of the best features of the DG method (such as high-order accuracy, conservation, and the
promise of monotonicity). The reason we have chosen SE and DG methods for our study is that they can be
constructed to high-order on unstructured grids (either with quadrilateral or triangular elements). WENO,
SFV, and SD methods do not offer the same level of geometric flexibility to use unstructured grids in combi-
nation with high-order accuracy. There are triangular WENO schemes but only for very specific stencils (see
[27] for unstructured WENO methods up to fourth order); this is true also for the SD method although this
method is still in its infancy and higher order stencils will undoubtedly be constructed in the future. The SFV
method, unfortunately, requires the elements to be planar which is of little use in our future work. In this
paper we only consider x—z models but for the three-dimensional model, we envision using curved triangular
prisms in order to take advantage of unstructured grids in the horizontal (x—y) direction; this will be most eas-
ily achieved with either SE or DG methods.

The remainder of the paper is organized as follows. Section 2 describes the three forms of the Euler and
Navier—Stokes equations that we study in this work. In Section 3 we discuss the seven test cases used to com-
pare our numerical models. Section 4 describes the spectral element and discontinuous Galerkin formulation
of the governing equations including the basis functions, numerical fluxes, and boundary conditions. In Sec-
tion 5 we describe the explicit third order Runge-Kutta method we use to march the equations in time and the
filters for maintaining stability. In Section 6 we present the results of the SE and DG models using all seven
test cases. Finally, in Section 7 we summarize the key findings of this research and propose future directions.

2. Governing equations

In this paper we study three different forms of the equations that govern the dynamics of nonhydrostatic atmo-
spheric processes. These three equation sets are the Euler equations that have been used for many years in com-
putational fluid dynamics (CFD). One of the sets that we explore is the complete compressible Navier—Stokes
equations with the physical viscosity defined by the Stokes hypothesis. It should be pointed out, however, that
we use viscosity for the Navier—Stokes equations only for comparing with other previously published model
results (see the density current test in Section 6); the main focus of this work is on the inviscid form of the equa-
tions (i.e. the Euler equations). Specifically, we study the following three equation sets:

1. (set 1) the non-conservative form using Exner pressure, momentum, and potential temperature,
2. (set 2) the conservative form using density, momentum, and potential temperature, and
3. (set 3) the conservative form using density, momentum, and total energy.

For the purposes of this study we restrict ourselves to two dimensions (x—z) and omit the Coriolis terms.

2.1. Equation set 1

Equation set 1, which has been used extensively in mesoscale modeling, reads

0 R
—n+u'Vn+—nV~u:0,
ot Cy
Ou )
§+u-Vu+cp0Vn:—gk+uV u, (1)
o0
—+u-V0=puvo
o tu UV, Y
where the solution vector is (m,u”,0)”, m = (,%) " is the Exner pressure, u = (u,w)” is the velocity field,

0 = Lis the potential temperature, and 7 denotes the transpose operator. In these equations P is the pressure,
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P, is the pressure at the surface (P, = 1 x 10° Pa) and T is the temperature. Other variables and symbols
requiring definition are the gradient operator V = (a—i,g)T, the gravitational constant g, the gas constant
R = ¢, — ¢, the specific heats for constant pressure and volume, ¢, and ¢, the dynamic viscosity u, and the
directional vector along the vertical (z) direction k = (0, 1)”. The viscosity, p, is zero for all tests except for
the density current.

The advantage that set 1 has over the other two sets is that it is completely self-contained, that is, it can be
solved with only four equations defining the four unknowns (five in three-dimensions). The only disadvantage
is that a model based on these equations cannot conserve either mass or energy. Note that the mass equation is
defined by a conservation-like law for the Exner pressure which cannot be formally conserved. Existing meso-
scale models based on similar equations to set 1 include (but are not limited to) ARPS [60] (University of
Oklahoma), COAMPS [26] (US Navy), LM [17] (German Weather Service), MMS5 [25] (Penn State/NCAR),
and NMM [29] (NCEP).

Introducing the following splitting of the Exner pressure and potential temperature n(x,?) = 7(z) + 7'(x, ¢)
and 0(x,t) = 0(z) + 0/ (x,t) where the mean values are in hydrostatic balance:

—dn
CPQE: —& (2)
allows us to rewrite Eq. (1) as
on’ , dz. R, , _ B
E—l—u‘Vn —|—wa—|—c—v(n +7)V-u=0,
ou , 0 )
Eﬁ—u-Vu—&—chVn :ggk—i—,uv u, (3)

20 Code

which has been expanded and simplified in order to enforce hydrostasis; Eq. (3) is the form used for all the test
cases in Section 6.

2.2. Equation set 2

Equation set 2 is gaining popularity in the literature because it is not too dissimilar from set 1 and is in
conservation form (for the inviscid case only). These equations are written as follows:

op

o + V. (pu) =0,

Opu

=, t V- (u@ut PLy) = —pgh + V- (upVu), (4)
op0

- Y (pOu) =V - (upV0),

where the conserved variables are (p, pu? pH)T, p is the density, u = (u, W)T is the velocity field, and 0 is the
potential temperature which we have defined previously. The pressure P which appears in the momentum
equation is obtained by the equation of state

P=P, (@) : (5)

and is required in order to close the system. Additional terms requiring definition are the tensor product ® and
the rank-2 identity matrix Z,; this term essentially converts the pressure (which is a scalar) into a tensor.
The advantage that set 2 has over set 1 is that it is in conservation form, which when using methods that are
formally conservative, allows the model to conserve all quantities. Note, however, that if the discretization
method is not formally conservative, then this set should have little or no advantage over set 1. Existing meso-
scale models based on this equation set includes WRF [48] and the model by Ahmad and Lindeman [1].
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Upon splitting of the density and potential temperature as p(x,t) = p(z) +p'(x,#) and
O(x,t) = 0(z) + 0'(x, ) where the mean values are in hydrostatic balance, Eq. (4) can be written as

%N (puy =0,

ot

Opu

%* V- (pu@u+PIy)=—p'gk+V-(upVu), (6)
op0’

=+ V- (pbu) = V.- (upVO),

where P = P — P and P = P(p, 0); Eq. (6) is the form used for all the test cases in Section 6.
2.3. Equation set 3

Equation set 3 is the form used in computational fluid dynamics (CFD, e.g. [18]) and has not been used in
atmospheric studies because the energy equation uses total energy rather than potential temperature which
then requires an additional step to compute potential temperature in order to use existing (moist) sub-grid
scale physical parameterizations. However, as we show in this paper, this equation set has some advantages
that may be worth considering for the development of future mesoscale numerical weather prediction
(NWP) models.

These equations are written as follows:

op

Fiy. -

5 TV (ou) =0,

dpu

%*V'(pu®u+PIz)=—pgk+V F)*, (7
dpe

%+V [(pe + P)u] = V- F™,

where the conserved variables are (p,pu?, pe)T, p is the density, u = (u,w)T is the velocity field,
e=c, T+ %u -u+ ¢ is the total energy, and ¢ = gz is the geopotential height. The pressure P is obtained
by the equation of state which, in terms of the solution variables, is written as

R 1
P=— ——u-u—¢q|. 8
P (e Ju-u w) (8)
Note that the pressure, Eq. (8), for set 3 is less expensive to compute than the pressure for set 2 (Eq. (5)). This
will be shown to have repercussions in the relative computational costs of these two equation sets.

The viscous fluxes F**® are defined as follows:

F' = u[Vu + (Vu)” + (V- u) 5] (9)
and

FUs =y FUs &VT, (10)
where y = CI’ is the specific heat ratio, A = —= comes from the Stokes hypothesis, and Pr is the Prandtl number.

This equatlon set directly represents the fundamental principles of conservation of mass, momentum and
energy, and is physically consistent both in the inviscid and in the viscous regimes. In particular, when viscos-
ity is present, it naturally accounts for the dissipative conversion of potential and kinetic energy into internal
energy. In addition, from a more computationally oriented viewpoint, it should be noted that, since this is the
equation set traditionally employed in CFD, much of the machinery developed in this field can be recycled;
examples include total variation diminishing (TVD) schemes, slope limiters, and approximate Riemann solv-
ers (e.g. see [18,55]).

Introducing the following splitting of the density and total energy p(x,¢) = p(z)+ p/(x,¢) and
e(x,t) =e(z) + ¢(x,t), where the mean values are in hydrostatic balance, allows us to rewrite Eq. (7) as
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op’

§+V~(pu) —0,

0 <

g—i—v-(pu@u—i—P’Iz):—p’gk+V~FZ“°, (11)
opée :

v (s

which is the form used in all the test cases in Section 6; note that we were not able to find a single mesoscale
model in the literature which uses this equation set.

2.4. Viscous stresses

It should be mentioned that only equation set 3 has the true viscous stresses; we use ad hoc diffusion terms
for sets 1 and 2 merely for convenience. The viscous terms of set 2 would be identical to those of set 3 for the
momentum if

V- (upVu) — V- FU,

where the arrow signifies that the term on the left should be replaced by the one on the right. For the potential
temperature, after much algebra, one would arrive at

V- (upVo) — —Cpin (V : (_%VT) +Fs Vu).

These viscous terms can then be used to compute the true stresses of set 1. Specifically, for set 1 we would get
for momentum

1 "
uv2u —~_V. FZISC
1%

and for potential temperature

V20— ——— (V- (=E2VT) + B va).

cpTp
There are two reasons why we do not use these stresses: the first reason is that for the purposes of intercom-
parison of our models with other previously published models we adhere to the equations used in Straka et al.
[51] which use viscous stresses similar to those that we define for sets 1 (Eq. (1)) and 2 (Eq. (4)). The second
reason for not using these stresses (at least for set 2) is that the equations would no longer be in conservation
form. Due to these issues alone we recommend set 3 to be used for all future nonhydrostatic atmospheric mod-
els. For the purposes of this study it is not so important to use the true viscous stresses for sets 1 and 2 since
viscosity is only used for one test case. Since no previous work using set 3 was found, we use the true Navier—
Stokes viscosity (Egs. (9) and (10)). Due to this discrepancy in the viscous stresses between the three equation
sets, we expect slight differences in the results; the question is how large will these differences be.

3. Definition of the test cases

We now describe the seven test cases used to validate the numerical models. The set of test cases that we use
is based on a list first proposed by Skamarock et al. [47]; we have added two bubble tests to the set. None of
the cases uses Coriolis and only the density current test requires viscosity.

For all cases, we shall define the initial conditions in terms of Exner pressure, 7, and potential temperature,
0. However, for equation sets 2 and 3 we require density, p, and for set 3 total energy, e. Thus the conversion
from 7 and 6 to p and e is as follows:

Py o

PZEW

and
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1
e:cvf)n—&—iu-u—i—gz.

To simplify the description of the initial conditions we shall write the Exner pressure and potential temper-
ature in terms of a mean value plus a perturbation, that is n(x,¢) = 7(z) + '(x,¢) and 0(x,?) = 0(z) + 0'(x, 1)
where the reference state is in hydrostatic balance.

3.1. Case 1. Inertia-gravity waves

The nonhydrostatic inertia-gravity wave test involves the evolution of a potential temperature perturbation
in a channel with periodic boundary conditions on the left and right boundaries. The initial perturbation radi-
ates to the left and right symmetrically, but because of the mean horizontal flow, does not remain centered
about the initial position. The initial conditions we use are identical to those of Skamarock and Klemp
[46]; we provide the test case definition below for completeness. The initial state of the atmosphere is taken
to have a constant mean flow of # = 20 m/s in a uniformly stratified atmosphere with a Brunt-Viisild fre-
quency of N' = 0.01/s. Using the definition of Brunt-Viiséld frequency

= g— n7
N? (fz In0 12
yields

9: goe%z, (13)

where the constant of integration is 0, = 300 K. The Exner pressure is obtained from the hydrostatic balance,
Eq. (2), as

2
_ g N2
T=1+ e s —1). 14
cp00N2< ) 44

In addition, the potential temperature is perturbed by the amount
sin (%)
0=0—>"25

- c i 2
1+ (52)

where 6, = 0.01 °C, A. = 10,000 m, a. = 5000 m, x. = 100,000 m, and =, = 3.14159265 is the Archimedes’
(trigonometric) constant.

The domain is defined as (x,z) € [0,300,000] x [0, 10,000] m with ¢ € [0,3000] s. No-flux boundary condi-
tions are used along the bottom and top boundaries while periodic boundary conditions are used along the
lateral boundaries.

3.2. Case 2: Rising thermal bubble

The rising thermal bubble test shows the evolution of a warm bubble in a constant potential temperature
environment. Because the bubble is warmer than the ambient air it rises while deforming as a consequence of
the shearing motion caused by the velocity field gradients until it forms a mushroom cloud. The initial con-
ditions we use are similar to those of Robert [42] with the air mass initially at rest and in hydrostatic balance.
Setting 6 = constant in (2) immediately provides for the Exner pressure. To drive the motion of the air, the
following potential temperature perturbation is then added:

0 for r > r.,
/_
0= %[14—(:05 (?)} for r < re,

where 0. = 0.5 °C, 7, is the trigonometric constant, r = \/ (x — x.)* + (z — z.)* with the following constants:
0 =300 K, r, = 250 m, and (x,z) € [0,1000]* m with 7 € [0,700] s and (x,,z.) = (500,350) m. The boundary
conditions for all four boundaries are no-flux.
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3.3. Case 3: Robert smooth bubble

Test case 3 is similar to the Robert smooth bubble presented in [42]; however, we use a cosine wave instead
of the Gaussian used in [42]. The definition of this case is almost identical to the rising thermal bubble except
that the domain is now defined as (x,z) € [0, 1000] x [0, 1500] m with ¢ € [0,800] s and (x,,z.) = (500,260) m.
Recall that in case 2, the bubble is initially positioned at y. = 350 whereas now we lower this position and let
the bubble evolve for an additional 100 s (from 700 s in case 2 to 800 s in case 3). The longer integration
requires us to move the top boundary in order to avoid having the bubble hit this boundary.

3.4. Case 4. Density current

The density current test was proposed in [51] and concerns the evolution of a cold bubble dropped in a neu-
trally stratified atmosphere. Because the bubble is cold, it sinks eventually hitting the ground. At this point, the
bubble begins to shear as it travels along the ground forming Kelvin—-Helmholtz rotors. As discussed in [51],
viscosity is required in order to obtain a grid-converged solution. The initial conditions for this case are quite
similar to those of the rising thermal bubble; however, the differences are in the domain size and the shape of
the cold cosine bubble. The potential temperature perturbation is defined as

0 = EC (1 + cos(m.r)],

where 0, = —15 °C

) )

and r, = 1. The domain is defined as (x,z) € [0,25,600] x [0,6400] m with ¢ € [0,900] s and the center of the
bubble is originally positioned at (x.,z.) = (0,3000) m with the size of the bubble defined by the parameters
(x,,z,) = (4000, 2000) m. The boundary conditions for all four boundaries are no-flux and a dynamic viscosity
of =75 m?/s is used. Note that we have defined only half the domain in the horizontal as proposed in Stra-
ka et al. [S1].

3.5. Case 5: Schdr mountain

The Schiar mountain test concerns the steady-state solution of hydrostatic flow over a five-peak mountain
chain, with steady inflow and outflow boundary conditions. The initial conditions and mountain profile are
given in Schaf et al. [43] which we now provide for completeness. The initial state of the atmosphere is taken
to have a constant mean flow of # = 10 m/s in a uniformly stratified atmosphere with a Brunt-Viisdld fre-
quency of N' = 0.01/s. Using the definition of Brunt-Viisild frequency, Eq. (12) yields the reference potential
temperature given in Eq. (13), the Exner pressure given in Eq. (14) where the constant of integration is taken
to be 0y = 280 K. The domain is defined as (x,z) € [—25,000,25,000] x [0,21,000] m with ¢ € [0,10] h. The
mountain is defined as

h(x) = hee @) cos? (Zcx>

‘e

with the parameters 4. = 250 m, A, = 4000 m, and a. = 5000 m. This profile is shown in Fig. 1 where the axes
have been magnified as follows (x,z) € [—10,000, 10,000] x [0, 1000] m in order to show the five peaks of the
mountain. No-flux boundary conditions are used along the bottom surface while non-reflecting boundary con-
ditions are used along the top and lateral boundaries. Note that this test is in the hydrostatic range since NT“ > 1.

3.6. Case 6: Linear hydrostatic mountain

The linear hydrostatic mountain test involves the steady-state solution of linear hydrostatic flow over a
single-peaked mountain with constant inflow and outflow boundary conditions. The initial conditions and
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Fig. 1. Case 5: The Schar Mountain profile magnified such that (x,z) € [-10, 000, 10,000] x [0,1000] m.

mountain profile are presented in Smith [49] and Durran and Klemp [11]. The initial state of the atmosphere
consists of a constant mean flow with # =20 m/s in an isothermal atmosphere with constant temperature
T = 250 K. Since in the isothermal case we have N/ = —£ = the potential temperature and Exner pressure pro-

files are immediately provided by Egs. (13) and (14), thips latter reducing to

s
m=e o’.

The domain is defined as follows: (x,z) € [0,240,000] x [0,30,000] m with ¢ € [0,10] h with the versiera di
Agnesi mountain profile defined as
he

()

where 2, = 1 m, x, = 120,000 m, and a. = 10,000 m. It can be verified that NT” > 1, so that the flow is in the
hydrostatic range. Non-reflecting boundary conditions are required along the lateral and top boundaries. In
addition, no-flux boundary conditions are used along the bottom.

h(x,z) = (15)

3.7. Case 7: Linear nonhydrostatic mountain

The linear nonhydrostatic mountain test involves the steady-state solution of linear nonhydrostatic flow
over a single-peaked mountain with constant inflow and outflow boundary conditions. For this test the initial
state of the atmosphere consists of a constant mean flow of # = 10 m/s in a uniformly stratified atmosphere
with a Brunt-Viiséld frequency of ' = 0.01/s. Potential temperature and Exner pressure profiles are given by
Egs. (13) and (14), respectively, with 6, = 280 K. The mountain profile given by Eq. (15) is used, with the
numerical parameters now specified as 4. =1 m, x. = 72,000 m, and a. = 1000 m. The computational
domain is (x,z) € [0, 144,000] x [0,30,000] m with ¢ € [0,5] h. Note that since NT“ =1 the flow is then in
the nonhydrostatic regime. No-flux boundary conditions are used along the bottom and non-reflecting bound-
ary conditions along the lateral and top boundaries.

4. Spatial discretization of the governing equations

For the sake of brevity, we shall only discuss the discretization of set 3 which we now write in the following
compact vector form
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%+V~F:S(q), (16)
where ¢ = (p, UT,E)” is the solution vector with U = pu and E = pe, F = F™ — F*™ is the total flux where
U
F™(q) = | 55 +PT (17)
(E+P)U

P
is the inviscid flux tensor,

0
F(q) = Vu + (Vu)” + (V- u)Z, (18)
w- [Vu+ (Vu)” + 2V -u)T,) +2VT
is the viscous flux tensor, and
0
S(q) = —| rgk (19)
0

is the source function. Eq. (16) must be solved in Q X (0, Tpa1), with Q C R2.
4.1. Basis functions, differentiation, and integration

To define the local operators which shall be used to construct the global approximation of the solution we
begin by decomposing the domain Q into N, non-overlapping quadrilateral elements such that

Ne
Q:U@.
e=1

We now define the reference element | = [—1, 1]2 and introduce for each element Q, the smooth, bijective trans-
formation Fgq, such that Q, = Fg (I). The notation x = F Qe(@ will also be used, with x = (x,z) € Q, and
&= (&,n) € |. Associated with the map F g, is the Jacobian Jo, = %, with determinant J, . The Jacobian deter-
minant of F g, restricted to the boundary of | is denoted by Jj, . In both the SE and DG methods, an approxima-
tion ¢, of the solution of Eq. (16) is sought such that, at each time level # € [0, Tpa)

v g, =¥ 0-753:» e=1,...,N,,
where ¥ is a function of the space Py(l) of bivariate polynomials of degree lower than or equal to N in |
Px(1) = Span{&"y"|m,n < N, (&) €1}, N > L.

A critical step is now the definition of a basis {i,}+_,,K = (N + 1)?, for Py(1). The tensor product-structure of
I allows us to construct such a basis as

‘ﬁk,-,-(g) = hi(&)h;(n),

where {4}, is a basis for Py([—1,1]) and an index k; is biunivocally associated with the pair (i, ), with
i,j=0,...,N. The basis functions #;(¢) are in turn constructed as the Lagrangian polynomials associated with
the Legendre—Gauss—Lobatto (LGL) points &; given as the roots of

(1-&)Py(8) =0,

where Py (&) is the Nth order Legendre polynomial. Notice that associated with these points are the Gaussian
quadrature weights

w; = N(N2+ 1) (P&é’))z.
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This fact will be exploited momentarily for the evaluation of local element integrals of ¢,.
With these definitions, we have

an(x,0lg, =Y Wi(Fol ()au(n), e=1,....N,, (20)

where we introduce the grid points x, = Fo,((¢;,7,)) and the grid point values g,(f) = gy(xs,?). The expan-
sion given in Eq. (20) is essential in order to compute local element-wise derivatives and integrals. Concerning
derivatives, in fact, it immediately provides

Ogy ~ d -1 Ogy o -1 dg,
Tee0] = @0, ] =S ) GO e1)
Concerning the computations of integrals, the expansion defined by Eq. (20) yields
N
| avtxnds = [ au(x(@.000.00 = > 00, (01, (G (22)
e ij=0

4.2. Spectral element method

In the spectral element method, the following weak form approximation of Eq. (16) is considered: find
qy(-,t) € V3F such that

/Q¢<65LIN+V.F(¢IN)>dQ—/QqSS(qN)dQ, Vo € VS, (23)

where
v ={¢ € H(Q): ¢l = Yo Fg' with y € Py(l),e=1,...,N,.}. (24)

Notice that the two requirements ¢ € H'(Q) and ¢|, =y o F,,! imply V3F C C°(Q). Integrating Eq. (23) by
parts yields the equivalent problem: find ¢y (-,7) € V3F such that

0
[o%raas [ on-Faoar- [ vo-Faae = [ ssaae. vie s 25)

where n is the outward pointing normal vector on the domain boundary I'. We point out that, although Eqs.
(23) and (25) are in principle equivalent, they yield different numerical formulations when approximate quad-
rature formulas are adopted for the computation of the flux integrals, as is often the case. Such quadrature
formulas in fact increase the computational efficiency of the scheme and diagonalize the mass matrix M to
be defined shortly. In this paper, we shall use the form (25), since it allows for global conservation of mass,
momentum, and energy even when approximating the integrals as in (22) [52].
By virtue of Egs. (21) and (22), Eq. (25) yields the matrix problem
dg

4 (M) F(g)~ DTF(g) = S(g), (26)

where
M =M'M, D=M'D

and M, M* and D are the global mass, boundary and differentiation matrices, respectively. These latter are in
turn constructed from their local counterparts M°, M** and D° by means of the direct stiffness summation
procedure

Ne Ne Ne
M= /:\IM M = /:\IM D= /:\IDE,
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where /\ivil denotes mapping the local degrees of freedom of each element @, to the corresponding global de-
grees of freedom in Q followed by summation (see [21] for further details). The local matrices are then defined
as

My, =wilJ o, (E)0m, Dy = wilJ o, (E)IVOi(x1), My = wylJy, (&,)|mn(x),

where h,k=1,...,K, 6y is the Kronecker delta, &, = (&) wi, = W), Wy, = 0 for j=0or j=N and
wy, = ; fori=0ori=N.

4.3. Discontinuous Galerkin method

The discontinuous Galerkin method comes in various forms and flavors. For example, one could use either
modal (amplitude—frequency space) or nodal (physical space) polynomial expansions. In this paper, we exploit
the Lagrangian basis introduced in Section 4.1 to define a nodal DG formulation with inexact integration as pro-
posed in [20]. Thus, the DG formulation that we describe below is essentially the discontinuous version of the SE
formulation illustrated in Section 4.2. Alternatively, one could use exact integration (as in [23]) but as shown in
[20] this would be more computationally expensive and thereby would not be competitive with the SE method.

In the DG method, Eq. (16) is multiplied by a test function ¢ and integrated over a generic element £,, and
the exact solution is replaced by its approximation, yielding

[ o(Bv-ra)ae [ osya. @7

where g%, denotes the degrees of freedom collocated in .. Applying now integration by parts and introducing
the numerical flux F*, the following problem is obtained: find gy (-,¢) € ¥R such that VQ,, e = 1,...,N,

a e
[ o7 dacs [ on-Fignar.- [ vo-rade= | ssigae vg e (28)

e

where
VG ={p e L*(Q): ¢lo, =V o Fy  with y € Py(l),e=1,...,N.}. (29)

Notice that, contrary to Eq. (24), there is no global continuity requirement, so that V'L & C°(Q). This is pos-
sible because in Eq. (25) differentiability is required separately within each element, and not within the entire
domain Q. The coupling between neighboring elements is then recovered through the numerical flux F*, which
is required to be a single valued function on the interelement boundaries and the precise definition of which is
given below.

By virtue of Egs. (21) and (22), Eq. (28) can be written in the matrix form

dge

dr
where Ms¢ = (M¢)~'M*< and D¢ = (M¢)™'D¢. Note that this equation can be simplified to yield the following
semi-discrete weak form:

dg;

dt

+ (M) F(q) - (D) F(g) = S(g) .

~ ) W.?,e |Jv,e| .
— (DT 5¢ - 2 LipgseyT p 31
( U) J + I W,e |J;3| (nl ) i ( )

Further integration by parts in Eq. (28), and simplifying, yields the following semi-discrete strong DG
formulation:

dg¢ 3 o A4 y

Yo ) F s e, (32)

el ye| i
Wi|‘]i|

which looks very similar to a collocation penalty method in that no global matrix system needs to be con-
structed; it should be understood that this simple form is only possible by choosing the inexact integration
DG form introduced in [20] which uses the same inexact integration theory and machinery used in the classical
SE method.
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4.3.1. Inviscid numerical flux

Substituting the boundary flux (Eq. (27)) with the numerical flux (Eq. (28)) is necessary in order to resolve
the ambiguity in the definition of ¢, on I', (where it can attain two different values) and, by doing this, restor-
ing the coupling between neighboring elements. Various choices are possible for the definition of F*; in the
present study we use the Rusanov flux, mainly because of its simplicity but also because we have detected
no discernible differences between the solution obtained with this flux function and the HLL, HLLC, or Roe’s
solver (see [18]). It is quite possible that for more stringent test cases (e.g. for shocks), differences between the
various Riemann solvers may occur.

Upon arbitrarily associating to each interelement boundary an intrinsic tangential direction, so that a left
(L) element and a right (R) element are identified, the Rusanov numerical flux can be expressed as

Fim(g) = % [Fr(gh) + Fu(qR) — |21(qR — g})n), (33)

where 4 = max(|U"| + VaL, [UR| + VaR) with U = u"® . n being the normal component of velocity with re-
spect to the edge I', and a = +/yRT being the speed of sound.

4.3.2. Viscous numerical flux

For the viscous form of the equations, the DG method is applied in a slightly different way. In fact, we use
the local discontinuous Galerkin method first proposed in [3] and later analyzed in [8]. The idea is very similar
to ideas put forth in the mixed finite element approach. In other words, rather than discretizing the Laplacian
directly via a finite element approximation, we proceed in the following two-step approach. In Egs. (9) and
(10) we define the viscous fluxes for the Navier—Stokes equations as

U=Vu and T =VT.
Then, we apply the DG discretization in weak form and dividing through by the mass matrix obtaining

e Sevie W e . Sevpe Wil
Uu; = —(D})uS + nuw; and T = —(Dl.j)Tj + W]

LV

neT; (34)

with &* =1 (u" 4+ u®) and T* =1 (T" + T®). Note that other choices are possible but we have chosen for sim-
plicity the average value at the interface (see [8] for other choices). At this point, we can now discretize the
viscous equations as

dgf Ner7T e w, i
i — (D9)TFS+S(q°) — ’
ar = (D) E () =g

Where Fe — FiHV(qe) _ FViSC(ue,Te), F* _ FinV(q*) _ FViSC(u*,T*)’ u* — _(uL +uR), and 7—* _ %(TL + TR)

1
2

S,9| s,9|
i

W F;, (35)

4.4. Boundary conditions

An important component of a mesoscale atmospheric model is the boundary conditions. For the test cases
considered in this paper (and assuming a rectangular domain) the boundary conditions are: no-flux along the
bottom boundary and either periodic, no-flux, or non-reflecting for the left and right boundaries, and either
no-flux or non-reflecting for the top boundary.

4.4.1. Non-reflecting boundary conditions
Let us rewrite the governing equations as
dg _
—_— = =T — s
i (4—7)
where the ellipsis denotes the usual terms in the governing equations and the term t is the coefficient of the

absorbing sponge layer which relaxes the numerical solution to the prescribed reference value g. In terms
of an explicit time-integrator, this becomes nothing more than

sponged

q =q—1(q—9),
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where ¢ is the value obtained from the dynamical model, g is the reference value, and g *°"¢¢ is the sponged
variable; the parameter 7 is a Lagrange multiplier that is found using a similar procedure to that presented in

[11].

4.4.2. No-flux boundary conditions
The no-flux boundary conditions are enforced by virtue of the statement

n-u=20

at the boundaries. Thus, we seek to eliminate the normal component of the velocity to the no-flux boundary
without altering the tangential component (we assume free slip boundary conditions for all test cases). The
tangent vector to a boundary is obtained by # = k x n which is equal to t = —n.i 4+ n.k. Thus we solve the fol-
lowing 2x2 system:

(o)) =)

where uy = t - u is the tangential component of velocity.

For the inviscid equations (i.e. the Euler equations) the no-flux boundary condition on the momentum is all
that is needed for all three equation sets. Concerning the viscous case, for equation sets 1 and 2, we simply
impose a zero viscous flux for both momentum and temperature. For equation set 3, however, while imposing
a zero viscous momentum flux is still appropriate, enforcing a zero viscous energy flux would result, in the case
of a neutral atmosphere, in the development of a thermal boundary layer at the top and bottom boundaries. In
this case in fact, since the viscous flux is controlled by the temperature gradient rather than by the potential
temperature gradient, the viscous flux

e _ 16 AT

¢ Pr dz
is required in order to maintain the neutral stratification. Hence, this latter flux, being required by the equa-
tions themselves and not by the numerical discretization, will be imposed in both the SE and DG
formulations.

4.5. Numerical models

In Section 2 the following three equation sets were discussed: set 1 given by Eq. (3), set 2 given by Eq. (6),
and set 3 given by Eq. (11). The eigenvalues of all three equation sets are (U,U,U — v/a, U + /a) where
U = n - u with n referring to a unit vector, and « is the speed of sound. It is important to know the eigenvalues
in order to choose the maximum time-step which will allow the model to run in a stable fashion, and for con-
structing the numerical flux in the discontinuous Galerkin models.

In Section 4 the spectral element (SE) and discontinuous Galerkin (DG) methods were described. Based on
the above three equation sets and the two numerical methods we have developed five numerical models which
we compare in Section 6. Table 1 summarizes the five numerical models that we study.

Table 1 shows that there is no DG model for equation set 1; this is because equation set 1 is not in conser-
vation form. Note that the momentum and energy equations can be written in conservation form as in equa-
tion set 2. However, to write the Exner pressure equation in conservation form requires adding (and

Table 1
Numerical models constructed in this study based on equation sets 1, 2, and 3 and the spectral element and discontinuous Galerkin
methods

Spectral element Discontinuous Galerkin
Set 1 (Eq. (3)) SEl -
Set 2 (Eq. (6)) SE2 DG2

Set 3 (Eq. (11)) SE3 DG3
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subtracting) terms which will lead to a source term that cannot be avoided. If this is not troubling enough, the
fluxes resulting from this system are non-physical and hence the DG method will not work. This then leaves us
with only five numerical models.

5. Time-integrator and filters

In order to advance the solution in time while retaining some level of high-order accuracy, we use a strong
stability preserving (SSP) Runge—Kutta third order (RK3) method of the type first proposed by Cockburn and
Shu [9].

Definition 5.1. The solution ¢ is said to be strongly stable if ||¢"|;v = [l¢" vV 7

Definition 5.2. The TV norm is defined as (see, e.g. [54]) ||q|ltv = Z?ﬁf”qlﬂ —q;l.
Let us write the semi-discrete (in space) equations as follows

dg

—~ =R

5 =~ R,
where R(q) is the SE or DG representation of the term S(g) — V - F(q) in Eq. (16) (where we assume a method
of lines approach). The SSP temporal discretization of this vector equation is

fork=1,...,S:¢" =dkq" +odig"" + B AR(g),

where ¢° = ¢",¢° = ¢""', and S denotes the number of stages used. For all of our simulations we use the
SSPRK (5,3) method of Spiteri and Ruuth [50] which is a 5-stage third-order strong stability preserving Run-
ge—Kutta method.

The time-step for all our simulations are chosen based on the maximum Courant number allowable by the
time-integrator. For the purposes of this study we define the Courant number as

e

Courant number = max (C—At) Veell,...,N.,
As ) o
where C = |U + /a| is the characteristic speed, U = n - u is the velocity in the direction n, a is the sound speed,
and As = v Ax? + Az? is the grid spacing. For all the results presented, the Courant number is taken to be 1.3
for the strong form SE method, Eq. (23), and 0.85 for the DG method (either strong or weak), and for the
weak form SE method, Eq. (25); it turns out that imposing the boundary conditions weakly reduces the max-
imum allowable time-step. We shall report more on this in future work.

In order to maintain stability for long-time integrations, it is important not only to adhere to the CFL con-
dition but also to control the Gibbs oscillations which affect all high-order methods in the absence of a dis-
sipative mechanism (e.g. viscosity, slope limiters, etc.). The standard approach to avoid such instabilities is
through the use of spatial filters of the Boyd—Vandeven type [6]. The filtering procedure is applied after each
time-step as follows

qg:FqNa

where ¢4 denotes the filtered solution of the state variable ¢, and F is the filter matrix defined in [21]; note that
the filter matrix is very weak — in fact, only the highest modes are reduced by 5%.

6. Results

In this section we validate the five SE and DG numerical models on the test case suite of seven problems.
For four of the seven problems that do not have analytic solutions we use symmetry and a comparison of
extrema as metrics to discern the quality of the models.

For the three mountain problems we have semi-analytic solutions based on linear theory which require the
application of a Fourier transform (see [49] for details). To obtain this semi-analytic solution we use a grid of
4000 (along x) by 100 (along z) points in order to ensure that the solution is exact within machine precision. In
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addition, since the grid for the numerical and analytic solutions are different, we then interpolate both solu-
tions to a grid of 400 (in x) by 100 (in z) defining a specific portion of the domain. This portion of the domain
is the one that we use to plot and compute the root-mean-square (RMS) errors. We define the root-mean-
square error as

NP
HqHRMS — Z(qnumcrical _ qanalytic)z/Np,
i=1
where N, = 40, 000.
Following Smith [49], for the hydrostatic and nonhydrostatic mountains we define the momentum flux as

+00
m@) = [ peuls 2wl 2)d,
where p(z) is the reference density as a function of height. From linear theory, the analytic hydrostatic
momentum flux is given as

mt(z) = — %f)sﬁs./\/hi, (36)
where the superscript H signifies Hydrostatic, p, and #, are the reference density and horizontal velocity values
at the surface, NV is the Brunt-Viisild frequency, and 4. is the height of the mountain.

Following Klemp and Durran [32], we define the analytic nonhydrostatic momentum flux as

m(z) = —0.457m" (z),

where m'!(z) is given by Eq. (36). Note that, as pointed out by Klemp and Durran [32], this solution is valid
only for A% = 1, which we specify a priori. The normalized momentum flux that we present below is then de-
fined as either m(z)/ m"(z) or m(z)/ m " (z), depending on whether the mountain problem is in the hydrostatic
or nonhydrostatic regime.

6.1. Case 1: Inertia-gravity waves

Fig. 2a shows the potential temperature perturbation contours for DG3 after 3000 s and Fig. 2b shows the
one-dimensional profile along z = 5000 m for all five models. Fig. 2b shows that all five models yield identical
solutions — this is especially of interest since the models use different numerical methods and equation sets. The
second observation is that the profiles are perfectly symmetric about the position x = 160,000 m. Note that

b 3x 10

—SE1

---sE2

o2 4N |-- SE3

a 10000 : : ——DG2

7500} ] 1t - DG3

N 5000} ] >
2500} ] of
0 . .
0 100.000 200.000 300.000
X 1
) . .

0 100.000 200.000 300.000

X

Fig. 2. Case I: Inertia-gravity waves. Potential temperature perturbation after 3000 s for 250 m resolution and 10th-order polynomials. (a)
shows the total domain using contour values between —0.0015 and 0.003 with a contour interval of 0.0005 and (b) shows the profiles along
5000 m height for all five models.
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Table 2

Case 1: Inertia-gravity wave

Model Wmax Wmin e;mx Hinin

SE1 2.698 x 1073 —2.775x 1073 2.787 x 1073 —1.518 x 1073
SE2 2.698 x 1073 —2.774 x 1073 2.787 x 1073 —1.519x 1073
SE3 2.698 x 1073 —2.774 x 1073 2.787 x 1073 —1.519x 1073
DG2 2.698 x 1073 —2.774 x 1073 2.787 x 1073 —1.519x 1073
DG3 2.698 x 1073 —2.774 x 1073 2.787 x 1073 —1.519x 1073

Comparison of the five models studied for 250 m resolution and 10th order polynomials after 3000 s.

there is a mean horizontal flow of 20 m/s which should move the initial perturbation from 100,000 m to
160,000 m in 3000 s; this is in fact what we get for all five models.

Skamarock and Klemp [46] give an analytic solution for this test but, unfortunately, it is only valid for the
Boussinesq equations, which while useful for qualitative comparisons, cannot be used to compute error norms
since we use the fully compressible equations. We use the same contouring interval used in [46] and our results
look quite similar. In addition, we see that our results are very similar to those of the recently proposed FV
model of Ahmad and Lindeman [1] which uses equation set 2. They use a smaller contouring interval but the
potential temperature perturbations of our models have similar values. Specifically, their values are in the
range 0' € [~1.49 x 107°,2.82 x 10~°] whereas ours are 0 € [~1.51 x 107,2.78 x 107°] which we show in
Table 2.

Looking at Table 2 we note that our five models give exactly the same results except for SE1. We do not
show the extrema for 7' and u because they are identical for all five models; for =’ they are
(—1.238 x 107°,1.716 x 107°) and for u they are (—1.067 x 1072,1.069 x 107%). The differences in wy;, and
0. . for SEI are certainly quite small but it is worth noting that SE1 is the only outlier. The results for this
case can be summarized as follows: all five models yield very good results and sets 2 and 3 yield identical solu-
tions, with set 1 being the only one that yields a different solution.

6.2. Case 2: Rising thermal bubble

Fig. 3 shows the potential temperature perturbation contours for DG3 after 700 s for various resolutions
while Fig. 4 shows the one-dimensional profile along the vertical direction for x = 500 m. This case has no
analytic solution but the resulting dynamics are sufficiently simple to be able to predict its proper evolution.
Fig. 4a shows that at a 20 m resolution, when the bubble is under-resolved (see Fig. 3a) set 1 yields a different
solution from sets 2 and 3. Note that all four models (SE2, SE3, DG2, and DG?3) give the exact same results
and SEI being the only outlier. As we increase the resolution to 10 m (Fig. 4b) and to 5 m (Fig. 4c), the DG
models (DG2 and DG3) yield a sharper discontinuity than the SE models (SE1, SE2, and SE3). The sharper
discontinuity of the DG models can also be seen in Table 3 where the solution variables are tabulated for the
5 m resolution. The SE models yield almost identical results to each other while the DG models yield larger
velocities yet smaller potential temperature extrema which result in a stronger and sharper discontinuity.
Finally, at a 3.5 m resolution (Fig. 4d) all the models converge to the same solution.

The results for this test can be summarized as follows: set 1 should not be chosen for under-resolved flows;
and the DG models are preferable to the SE models.

6.3. Case 3: Robert smooth bubble

Fig. 5 shows the potential temperature perturbation contours for DG3 after 700 and 800 s for a 5 m reso-
lution while Fig. 6 shows the one-dimensional profile along the vertical direction for x = 500 m for all five
models. Fig. 5 shows that from 700 to 800 s, the dynamics of the bubble changes from very smooth to turbu-
lent. Fig. 6a shows that at 700 s, the SE solutions (SE1, SE2, and SE3) begin to separate from the DG
solutions (DG2 and DG3). At this point, it is not known which solution is correct, but upon looking at
Fig. 6b we see that at 800 s the SE solutions begin to oscillate wildly while the DG solutions maintain a sharp
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Fig. 3. Case 2: Rising Thermal Bubble. Potential temperature perturbation after 700 s for the following resolutions: (a) 20, (b) 10, (c) 5,
and (d) 3.5 m. All resolutions use 10th order polynomials, and the contour values are from —0.05 to 0.525 with an interval of 0.025.

discontinuity. Table 4 confirms that the DG solutions indeed do a better job of capturing the discontinuity
since it can be observed that the potential temperature (0') extrema are smaller. The results for this test show
that for strong gradients, the DG models are clearly preferable to the SE models. Note that we have not used
any slope limiter or additional machinery with the DG method. Both the SE and DG models share the exact
same machinery such as the spatial filters. This test highlights the advantages that the DG method may offer
mesoscale modeling. In future work, we shall include slope limiters to the DG method in order to improve on
the handling of discontinuities and other such sharp gradients.

6.4. Case 4: Density current

Fig. 7 shows the potential temperature perturbation contours after 900 s for 400, 200, 100, and 50 m res-
olutions. The first observation is that even at the very coarse resolution of 400 m (Fig. 7a), two of the three
Kelvin—Helmholtz rotors are clearly visible. At a 200 m resolution (Fig. 7b) the second rotor is much better
defined. At 100 m (Fig. 7c), all three rotors are clearly visible. Finally, at 50 m (Fig. 7d) there is little change
in the structure of the rotors, the only discernible difference is that the noise above the rotors has disappeared.

In Fig. 8 we plot the one-dimensional profile of the potential temperature perturbation along the horizontal
(x) direction at a height of z = 1200 m for all five models (on the left panel) and the profiles for five different
resolutions (on the right panel). The three negative wells in Fig. 8a correspond to the three distinct rotors
clearly visible in Fig. 7. Fig. 8a shows that the results for the five models split into two distinct groups. In
one group, the three models SE1, SE2, and DG?2 all give the same results and in the second group the models
SE3 and DG3 give the same results. The differences between groups one and two are quite small but certainly
not insignificant. This difference, however, is not unexpected since SE3 and DG3 use equation set 3 which has
the true Navier—Stokes viscous stress. The main point that should be concluded from this figure is that the
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Fig. 4. Case 2: Rising Thermal Bubble. Potential temperature perturbation after 700 s for the following resolutions: (a) 20, (b) 10, (c) 5,
and (d) 3.5 m. All resolutions use 10th order polynomials, and the profiles shown are along the vertical (z) at x = 500 m for all five models.

Table 3

Case 2: Rising thermal bubble

Model nl’nax :nin Umax Umin Wmax Win O:nax O;nin
SEI 9.364 x 1076 —1.195x 1073 2.073 —2.073 2.536 —1.911 0.570 —0.098
SE2 9.364 x 10~° —1.196 x 1073 2.074 —2.074 2.536 —1.911 0.570 —0.098
SE3 9.365 x 1076 —1.196 x 1073 2.074 -2.074 2.536 —1.911 0.570 —0.098
DG2 9.355 x 107° —1.195 x 1073 2.081 —2.081 2.543 —1.915 0.538 —0.093
DG3 9.355 % 1076 —1.195%x 107° 2.081 —2.081 2.543 —1.915 0.538 —0.093

Comparison of the five models studied for 5 m resolution and 10th order polynomials after 700 s.

equation set and not the numerical method has the larger impact on the solution for this test. To be convinced
of this one only needs to look at Table 5 which we will discuss in a moment. Let us now turn to Fig. 8b to
confirm that the models have indeed converged at 100 m resolution.

Fig. 8b shows that at 400 and 200 m resolutions, the potential temperature profiles are still changing. How-
ever, looking at either 100, 50, or 25 m resolutions one can see that all these curves are directly on top of each
other; which confirms that our models have converged at 100 m resolution. Let us now turn to the re